Compressive Wideband Power Spectrum Analysis for Eeg Signals Using Fastica And Neural Network

نویسندگان

  • R. Selvi
  • S. T. Sadish Kumar
  • Dr. Kasthuri
چکیده

In several applications, such as wideband spectrum sensing for cognitive radio, only the power spectrum (a.k.a. the power spectral density) is of interest and there is no need to recover the original signal itself. In addition, high-rate analog-to-digital converters (ADCs) are too power hungry for direct wideband spectrum sensing. These two facts have motivated us to investigate compressive wideband power spectrum sensing, which consists of a compressive sampling procedure and a reconstruction method that is able to recover the unknown power spectrum of a wide-sense stationary signal from the obtained sub-Nyquist rate samples. The task oriented brain activity analysis and classification is a prime issue in EEG signal processing . The similar attempt has been done here to estimate the brain activity on the basis of power spectrum analysis. For this, the modified approach involving both Independent Component Analysis (ICA) and Principal Component Analysis (PCA) methodologies has been used in this paper to investigate the behavior of brain’s electrical activity for a simple case of visual attention.The input EEG signals are analyzed with the aid of Fast Independent Component Analysis (FastICA), a Statistical Signal Processing Technique, to obtain the components related to the detection of epileptic seizures. The BackPropagation Neural Network is trained with the obtained components for effective detection of epileptic seizures. Index Terms : EEG signal, ICA and PCA, BPNN, ANN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

Eeg Signal Classification Based on Nn with Ica and Stft

A novel approach is proposed for Electroencephalogram signal classification using Artificial Neural Network based on Independent Component Analysis and Short Time Fourier Transform. The source EEG signals contain the electrical activity of the brain produced in the background by the cerebral cortex nerve cells. EEG is one of the most utilized methods for effective analysis of the brain function...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light

The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013